Python Help 题目:Quiz Python LAB
当前位置:以往案例 > >Python Help 题目:Quiz Python LAB
2019-06-12

Import modules

from datetime import datetime import pandas as pd

import matplotlib.pyplot as pyplot

Consider the following data points:

date

tick_numbers

2016-05-01 10:23:05.069722

3213

2016-05-01 10:23:05.119994

4324

2016-05-02 10:23:05.178768

2132

2016-05-02 10:23:05.230071

43242

2016-05-02 10:23:05.230071

4234

2016-05-02 10:23:05.280592

4234

2016-05-03 10:23:05.332662

4324

2016-05-03 10:23:05.385109

1245

2016-05-04 10:23:05.436523

1555

2016-05-04 10:23:05.486877

543345

Create a dataframe ‘ts’

ts=

print ts

date tick_numbers

0 2016-05-01 10:23:05.069722

3213

1 2016-05-01 10:23:05.119994

4324

2 2016-05-02 10:23:05.178768

2132

3 2016-05-02 10:23:05.230071

43242

4 2016-05-02 10:23:05.230071

4234

5 2016-05-02 10:23:05.280592

4234

6 2016-05-03 10:23:05.332662

4324

7 2016-05-03 10:23:05.385109

1245

8 2016-05-04 10:23:05.436523

1555

9 2016-05-04 10:23:05.486877

543345

Convert ts['date'] from string to datetime. You can use ts.index.

ts.index=

Delete useless column with the command del

del

print ts

In [17]: print ts

tick_numbers

date

2016-05-01 10:23:05.069722

3213

2016-05-01 10:23:05.119994

4324

2016-05-02 10:23:05.178768

2132

2016-05-02 10:23:05.230071

43242

2016-05-02 10:23:05.230071

4234

2016-05-02 10:23:05.280592

4234

2016-05-03 10:23:05.332662

4324

2016-05-03 10:23:05.385109

1245

2016-05-04 10:23:05.436523

1555

2016-05-04 10:23:05.486877

543345

Print all data from 2016

Print all data from May 2016

Data after May 3rd, 2016

Remove all the data after May 2nd, 2016 using truncate

Count the number of data per timestamp

Mean value of ticks per day. You will use resample with a period of D and a method of mean.

Total value ticks per day. You will use sum and a period of D

Plot of the total of ticks per day

Create another dataframe

np.random.seed(12345)

create a dictionary

df[‘ARCA’] = store np.random.randint(low=20000, high=30000, size=62)

df[‘BARX’] = store np.random.randint(low=20000, high=30000, size=62)

index = pd.date_range('4/1/2012', '6/1/2012')

create the dataframe with the 3 components above

Print (df)

pd.DataFrame(volume,index=index).head() Out[90]:

ARCA BARX 2012-04-01 24578 28633 2012-04-02 22177 26542 2012-04-03 23492 26554 2012-04-04 24094 21707 2012-04-05 24478 25568

Truncate the dataframe to get data (before='2012-04-04',after='2012-05-24')

Change the offset of the dataframe by pd.DateOffset(months=1, days=1)

Shift the dataframe by 1 day

Lag a variable 1 day

Aggregate into 2W-SUN (bi-weekly starting by Sunday) by summing up the value of each daily volumw

Aggregate into weeks by averaging up the value of each daily volume


在线提交订单