案例math之modeling:高教社杯全国大学生数学建模竞赛
当前位置:以往案例 > >案例math之modeling:高教社杯全国大学生数学建模竞赛
2018-02-22

2013高教社杯全国大学生数学建模竞赛

(请先阅读“全国大学生数学建模竞赛论文格式规范”)




D题 公共自行车服务系统


公共自行车作为一种低碳、环保、节能、健康的出行方式,正在全国许多城市迅速推广与普及。在公共自行车服务系统中,自行车租赁的站点位置及各站点自行车锁桩和自行车数量的配置,对系统的运行效率与用户的满意度有重要的影响。

附件1为浙江省温州市鹿城区公共自行车管理中心提供的某20天借车和还车的原始数据,所给站点的地理位置参见附件2(详细信息可以参考温州市鹿城区公共自行车管理中心网站:http://www.wzbicycle.com)。请你们在搞清楚公共自行车服务模式和使用规则的基础上,根据附件提供的数据,建立数学模型,讨论以下问题:

1. 分别统计各站点20天中每天及累计的借车频次和还车频次,并对所有站点按累计的借车频次和还车频次分别给出它们的排序。另外,试统计分析每次用车时长的分布情况。

2. 试统计20天中各天使用公共自行车的不同借车卡(即借车人)数量,并统计数据中出现过的每张借车卡累计借车次数的分布情况。

3. 找出所有已给站点合计使用公共自行车次数最大的一天,并讨论以下问题:

(1)请定义两站点之间的距离,并找出自行车用车的借还车站点之间(非零)最短距离与最长距离。对借还车是同一站点且使用时间在1分钟以上的借还车情况进行统计。

(2)选择借车频次最高和还车频次最高的站点,分别统计分析其借、还车时刻的分布及用车时长的分布。

(3)找出各站点的借车高峰时段和还车高峰时段,在地图上标注或列表给出高峰时段各站点的借车频次和还车频次,并对具有共同借车高峰时段和还车高峰时段的站点分别进行归类。

4. 请说明上述统计结果携带了哪些有用的信息,由此对目前公共自行车服务系统站点设置和锁桩数量的配置做出评价。

5. 找出公共自行车服务系统的其他运行规律,提出改进建议。


附件1:公共自行车数据(内含20个Excel文件)

附件2:公共自行车站点分布图



在线提交订单