R语言数据可视化—交互式图表recharts包
REmap包的github链接地址:https://github.com/taiyun/recharts几个样例demo:http://xwj.565tech.com/jianshu/recharts/ring.htmlhttp://xwj.565tech.com/jianshu/recharts/dashboard.htmlhttp://xwj.565tech.com/jianshu/recharts/bubble.html
一.安装方式if (!require(devtools)) library(devtools)install_github(“madlogos/recharts”)
二.使用方法:1.散点图/气泡图echartr(iris, x=SepalWidth, y=PetalWidth)多个维度:series控制echartr(iris, x=SepalWidth, y=PetalWidth, series=Species)
气泡图:type:标签控制echartr(iris, SepalWidth, PetalWidth,series = Species, weight=PetalLength, type=’bubble’)
2.管道操作echartr(iris, SepalWidth, PetalWidth, weight=PetalLength) %>% setDataRange(calculable=TRUE, splitNumber=0, labels=c(‘Big’,’Small’), color=c(‘red’, ‘yellow’, ‘green’), valueRange=c(0, 2.5))
3.折线图先改造下内置数据集:aq <- airqualityaq$Date <- as.Date(paste(‘1973′, aq$Month, aq$Day, sep=’-‘))aq$Day <- as.character(aq$Day)aq$Month <- factor(aq$Month, labels=c(“May”, “Jun”, “Jul”, “Aug”, “Sep”))
echartr(aq, Date, Temp, type=’line’) %>% setTitle(‘NY Temperature May – Sep 1973’) %>% setSymbols(‘none’)
含有分类属性:echartr(aq, Day, Temp, Month, type=’line’) %>% setTitle(‘NY Temperature May – Sep 1973, by Month’) %>% setSymbols(’emptycircle’)
带有时间轴(带有动态效果哦~~~):echartr(aq, Day, Temp, t=Month, type=’line’) %>% setTitle(‘NY Temperature May – Sep 1973, by Month’) %>% setSymbols(’emptycircle’)
也可画面积图:type属性控制echartr(aq, Day, Temp, Month, type=’area’, subtype=’stack’) %>% setTitle(‘NY Temperature May – Sep 1973, by Month’) %>% setSymbols(’emptycircle’)
4.饼图重构内置数据集titanic <- data.table::melt(apply(Titanic, c(1,4), sum))names(titanic) <- c(‘Class’, ‘Survived’, ‘Count’)knitr::kable(titanic)画饼图,可以和漏斗图切换echartr(titanic, Class, Count, type=’pie’) %>% setTitle(‘Titanic: N by Cabin Class’)
多个饼图:echartr(titanic, Survived, Count, facet=Class, type=’pie’) %>% setTitle(‘Titanic: Survival Outcome by Cabin Class’)
环图:echartr(titanic, Survived, Count, facet=Class, type=’ring’) %>% setTitle(‘Titanic: Survival Outcome by Cabin Class’)
信息图样环图:ds <- data.frame(q=c(‘68% feel good’, ‘29% feel bad’, ‘3% have no feelings’), a=c(68, 29, 3))g <- echartr(ds, q, a, type=’ring’, subtype=’info’) %>% setTheme(‘macarons’, width=800, height=600) %>% setTitle(‘How do you feel?’,’ring_info’, pos=c(‘center’,’center’, ‘horizontal’))g
南丁格尔玫瑰图:echartr(titanic, Class, Count, facet=Survived, type=’rose’, subtype=’radius’) %>% setTitle(‘Titanic: Survival Outcome by Cabin Class’)
5.雷达图:重构内置数据集cars = mtcars[c(‘Merc 450SE’,’Merc 450SL’,’Merc 450SLC’), c(‘mpg’,’disp’,’hp’,’qsec’,’wt’,’drat’)]cars$model <- rownames(cars)cars <- data.table::melt(cars, id.vars=’model’)names(cars) <- c(‘model’, ‘indicator’, ‘Parameter’)knitr::kable(cars)
单个雷达图echartr(cars, indicator, Parameter, model, type=’radar’, sub=’fill’) %>% setTitle(‘Merc 450SE vs 450SL vs 450SLC’)
多个雷达图:echartr(cars, indicator, Parameter, facet=model, type=’radar’) %>% setTitle(‘Merc 450SE vs 450SL vs 450SLC’)
6.比较有趣的dashboard构造一个数据集:data = data.frame(x=rep(c(‘KR/min’, ‘Kph’), 2), y=c(3.3, 56, 9.5, 88), z=c(rep(‘t1’, 2), rep(‘t2’, 2)))knitr::kable(data)
echartr(data, x, y, type=’gauge’)多个dashboard:echartr(data, x, y, facet=x, type=’gauge’)带时间轴:echartr(data, x, y, facet=x, t=z, type=’gauge’)
基本上常用的数据图表展示recharts都可以很方便和很酷炫的展示,作者只是挑选了几个比较常用的图表类型做了抛砖迎玉.具体的细节各位可以去查看具体的文档:https://madlogos.github.io/recharts/index_cn.html#-en
欢迎加入本站公开兴趣群商业智能与数据分析群兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识QQ群:81035754