整数的素数和解析
当前位置:以往代写 > C/C++ 教程 >整数的素数和解析
2019-06-13

整数的素数和解析

整数的素数和解析

副标题#e#

【问题描写】

歌德巴赫意料说任何一个不小于6的偶数都可以解析为两个奇素数之和。对此问题扩展,假如一个整数可以或许暗示成两个或多个素数之和,则获得一个素数和解析式。对付一个给定的整数,输出所有这种素数和解析式。留意,对付同构的解析只输出一次(好比5只有一个解析2 + 3,而3 + 2是2 + 3的同构解析式)。

譬喻,对付整数8,可以作为如下三种解析:

(1) 8 = 2 + 2 + 2 + 2

(2) 8 = 2 + 3 + 3

(3) 8 = 3 + 5

【算法阐明】

由于要将指定整数N解析为素数之和,则首先需要计较出该整数N内的所有素数,然后递归求解所有素数和解析即可。

C++代码实现如下:

#include <iostream>
#include <vector>
#include <iterator>
#include <cmath>
using namespace std;
// 计较num内的所有素数(不包罗num)
void CalcPrimes(int num, vector<int> &primes)
{
  primes.clear();
  if (num <= 2)
    return;

  primes.push_back(2);
  for (int i = 3; i < num; i += 2) {
    int root = int(sqrt(i));
    int j = 2;
    for (j = 2; j <= root; ++j) {
      if (i % j == 0)
        break;
    }
    if (j > root)
      primes.push_back(i);
  }
}
// 输出所有素数组合(递归实现)
int PrintCombinations(int num, const vector<int> &primes, int from, vector<int> &numbers)
{
  if (num == 0) {
    cout << "Found: ";
    copy(numbers.begin(), numbers.end(), ostream_iterator<int>(cout, " "));
    cout << '\n';
    return 1;
  }

  int count = 0;

  // 从第from个素数搜索,从而制止输出同构的多个组合
  int primesNum = primes.size();
  for (int i = from; i < primesNum; ++i) {
    if (num < primes[i])
      break;
    numbers.push_back(primes[i]);
    count += PrintCombinations(num - primes[i], primes, i, numbers);
    numbers.pop_back();
  }

  return count;
}
// 计较num的所有素数和解析
int ExpandedGoldbach(int num)
{
  if (num <= 3)
    return 0;

  vector<int> primes;
  CalcPrimes(num, primes);

  vector<int> numbers;
  return PrintCombinations(num, primes, 0, numbers);
}
int main()
{
  for (int i = 1; i <= 20; ++i) {
    cout << "When i = " << i << ":\n";
    int count = ExpandedGoldbach(i);
    cout << "Total: " << count << "\n\n";
  }
}


#p#副标题#e#

运行功效:

When i = 1:
Total: 0
When i = 2:
Total: 0
When i = 3:
Total: 0
When i = 4:
Found: 2 2
Total: 1
When i = 5:
Found: 2 3
Total: 1
When i = 6:
Found: 2 2 2
Found: 3 3
Total: 2
When i = 7:
Found: 2 2 3
Found: 2 5
Total: 2
When i = 8:
Found: 2 2 2 2
Found: 2 3 3
Found: 3 5
Total: 3
When i = 9:
Found: 2 2 2 3
Found: 2 2 5
Found: 2 7
Found: 3 3 3
Total: 4
When i = 10:
Found: 2 2 2 2 2
Found: 2 2 3 3
Found: 2 3 5
Found: 3 7
Found: 5 5
Total: 5
When i = 11:
Found: 2 2 2 2 3
Found: 2 2 2 5
Found: 2 2 7
Found: 2 3 3 3
Found: 3 3 5
Total: 5
When i = 12:
Found: 2 2 2 2 2 2
Found: 2 2 2 3 3
Found: 2 2 3 5
Found: 2 3 7
Found: 2 5 5
Found: 3 3 3 3
Found: 5 7
Total: 7
When i = 13:
Found: 2 2 2 2 2 3
Found: 2 2 2 2 5
Found: 2 2 2 7
Found: 2 2 3 3 3
Found: 2 3 3 5
Found: 2 11
Found: 3 3 7
Found: 3 5 5
Total: 8
When i = 14:
Found: 2 2 2 2 2 2 2
Found: 2 2 2 2 3 3
Found: 2 2 2 3 5
Found: 2 2 3 7
Found: 2 2 5 5
Found: 2 3 3 3 3
Found: 2 5 7
Found: 3 3 3 5
Found: 3 11
Found: 7 7
Total: 10
When i = 15:
Found: 2 2 2 2 2 2 3
Found: 2 2 2 2 2 5
Found: 2 2 2 2 7
Found: 2 2 2 3 3 3
Found: 2 2 3 3 5
Found: 2 2 11
Found: 2 3 3 7
Found: 2 3 5 5
Found: 2 13
Found: 3 3 3 3 3
Found: 3 5 7
Found: 5 5 5
Total: 12
When i = 16:
Found: 2 2 2 2 2 2 2 2
Found: 2 2 2 2 2 3 3
Found: 2 2 2 2 3 5
Found: 2 2 2 3 7
Found: 2 2 2 5 5
Found: 2 2 3 3 3 3
Found: 2 2 5 7
Found: 2 3 3 3 5
Found: 2 3 11
Found: 2 7 7
Found: 3 3 3 7
Found: 3 3 5 5
Found: 3 13
Found: 5 11
Total: 14
When i = 17:
Found: 2 2 2 2 2 2 2 3
Found: 2 2 2 2 2 2 5
Found: 2 2 2 2 2 7
Found: 2 2 2 2 3 3 3
Found: 2 2 2 3 3 5
Found: 2 2 2 11
Found: 2 2 3 3 7
Found: 2 2 3 5 5
Found: 2 2 13
Found: 2 3 3 3 3 3
Found: 2 3 5 7
Found: 2 5 5 5
Found: 3 3 3 3 5
Found: 3 3 11
Found: 3 7 7
Found: 5 5 7
Total: 16
When i = 18:
Found: 2 2 2 2 2 2 2 2 2
Found: 2 2 2 2 2 2 3 3
Found: 2 2 2 2 2 3 5
Found: 2 2 2 2 3 7
Found: 2 2 2 2 5 5
Found: 2 2 2 3 3 3 3
Found: 2 2 2 5 7
Found: 2 2 3 3 3 5
Found: 2 2 3 11
Found: 2 2 7 7
Found: 2 3 3 3 7
Found: 2 3 3 5 5
Found: 2 3 13
Found: 2 5 11
Found: 3 3 3 3 3 3
Found: 3 3 5 7
Found: 3 5 5 5
Found: 5 13
Found: 7 11
Total: 19
When i = 19:
Found: 2 2 2 2 2 2 2 2 3
Found: 2 2 2 2 2 2 2 5
Found: 2 2 2 2 2 2 7
Found: 2 2 2 2 2 3 3 3
Found: 2 2 2 2 3 3 5
Found: 2 2 2 2 11
Found: 2 2 2 3 3 7
Found: 2 2 2 3 5 5
Found: 2 2 2 13
Found: 2 2 3 3 3 3 3
Found: 2 2 3 5 7
Found: 2 2 5 5 5
Found: 2 3 3 3 3 5
Found: 2 3 3 11
Found: 2 3 7 7
Found: 2 5 5 7
Found: 2 17
Found: 3 3 3 3 7
Found: 3 3 3 5 5
Found: 3 3 13
Found: 3 5 11
Found: 5 7 7
Total: 22
When i = 20:
Found: 2 2 2 2 2 2 2 2 2 2
Found: 2 2 2 2 2 2 2 3 3
Found: 2 2 2 2 2 2 3 5
Found: 2 2 2 2 2 3 7
Found: 2 2 2 2 2 5 5
Found: 2 2 2 2 3 3 3 3
Found: 2 2 2 2 5 7
Found: 2 2 2 3 3 3 5
Found: 2 2 2 3 11
Found: 2 2 2 7 7
Found: 2 2 3 3 3 7
Found: 2 2 3 3 5 5
Found: 2 2 3 13
Found: 2 2 5 11
Found: 2 3 3 3 3 3 3
Found: 2 3 3 5 7
Found: 2 3 5 5 5
Found: 2 5 13
Found: 2 7 11
Found: 3 3 3 3 3 5
Found: 3 3 3 11
Found: 3 3 7 7
Found: 3 5 5 7
Found: 3 17
Found: 5 5 5 5
Found: 7 13
Total: 26

修改上面的措施,去掉解析式的输出语句,只保存计数成果,别离对N = 100, 200, 300举办测试。功效如下:

#p#分页标题#e#

-bash-3.2$ time ./a.out
When i = 100:
Total: 40899
real  0m0.114s
user  0m0.112s
sys   0m0.002s
-bash-3.2$ time ./a.out
When i = 200:
Total: 9845164
real  0m38.344s
user  0m38.329s
sys   0m0.001s
-bash-3.2$ time ./a.out
When i = 300:
Total: 627307270
real  50m37.198s
user  50m32.556s
sys   0m1.786s
-bash-3.2$

由功效可见,当N = 300时,解析数就大得吓人了。

    关键字:

在线提交作业