OpenCV, color reduction method
当前位置:以往代写 > C/C++ 教程 >OpenCV, color reduction method
2019-06-13

OpenCV, color reduction method

OpenCV, color reduction method

副标题#e#

方针:

这次进修的方针是答复下面的几个问题:

1 图片像素是如何被扫描的?

2OpenCV 矩阵值如何被存储?

3如何权衡算法的机能?

4什么是查找表和为什么要用他们?

看完这篇,但愿可以或许办理上面的这些问题。

正文:

首先我们思量一下简朴的色彩低落要领(color reduction method,翻译的欠好请指正),假如利用的是c或c++无标记的char(八字节巨细的空间),一个信道(channel)有256个差异的值(2^8=256),可是假如利用的是GRB方案,三个channel的话,颜色的数量就会变为256*256*256,或许是16个million这么多,这么多的颜色数量,对付计较机来说仍然是一个承担,所以可以想一些要领来低落这些色彩数量。

可以利用简朴的要领来低落图像色彩空间,好比,将0-9的数字都统一用0来取代,10-19的数字都统一用10取代。这种转换方案可以用下面的公式暗示

OpenCV, color reduction method

通过上面的公式,把所有像素点的值更新一下。可是,上面的公式中有除法,这里要表达一个是,计较劲较量多的环境下,不消乘除,就不要用,最好把他们转换为加减。我们知道,在转换前像素点的值只有256个,所以我们可以用查找表的方法,我们事先把所有的计较功效都生存在一个数组里,每次要执行上面的公式计较的时候,功效直接从数组里取出来就ok了。好比32对应30,表table[32]=30是早计较出来的,直接会见table[32]就OK了。

图片矩阵如安在内存中存储的:

灰度图片的矩阵存储方法:

灰度图片的每一个像素点,只由一个值来暗示,所以,就是一个普通的二维矩阵。

OpenCV, color reduction method

彩色图片的矩阵存储方法:

OpenCV, color reduction method

彩色图片的存储方法和灰度图片纷歧样,这里展示的是RGB名目标,可以看到,每一个像素,由三个值,代表蓝色,绿色,赤色的三个数值暗示,存储方法不是三维的,而是二维,不外列向量放大了三倍。从图片中可以清楚的看到。


#p#副标题#e#

效率:

较量像素数量低落方法效率的代码,在本文的最后头,代码看上去许多,其实布局较量简朴,看一会儿就大白了。附上一张功效图:

OpenCV, color reduction method

最快的OpenCV内的LUT函数。关于LUT,看这里

可以大致的看一下代码,代码不难,很容易懂:

#include <opencv2/core/core.hpp>  
#include <opencv2/highgui/highgui.hpp>  
#include <iostream>  
#include <sstream>  
      
using namespace std;  
using namespace cv;  
      
static void help()  
{  
    //这里提示输入有三个参数,第一个是图像的名字,第二个是参数是公式中的低落颜色数的数字,这里是10,第三个参数,假如是[G]代表是灰度图片,不然不是。  
    cout  
        << "\n--------------------------------------------------------------------------" << endl  
        << "This program shows how to scan image objects in OpenCV (cv::Mat). As use case"
        << " we take an input image and divide the native color palette (255) with the "  << endl  
        << "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl  
        << "Usage:"                                                                       << endl  
        << "./howToScanImages imageNameToUse divideWith [G]"                              << endl  
        << "if you add a G parameter the image is processed in gray scale"                << endl  
        << "--------------------------------------------------------------------------"   << endl  
        << endl;  
}  
      
Mat& ScanImageAndReduceC(Mat& I, const uchar* table);  
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);  
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar * table);  
      
/* 
    措施主要是看差异的color reduction方法对付措施运行速度的影响。 
    利用getTickCount()函数来获取当前时间,操作当前时间-上次获取的时间,来获得运行时间 
     
*/
int main( int argc, char* argv[])  
{  
    help();  
    if (argc < 3)  
    {  
        cout << "Not enough parameters" << endl;  
        return -1;  
    }  
      
    Mat I, J;  
    if( argc == 4 && !strcmp(argv[3],"G") )   
        I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);  
    else
        I = imread(argv[1], CV_LOAD_IMAGE_COLOR);  
      
    if (!I.data)  
    {  
        cout << "The image" << argv[1] << " could not be loaded." << endl;  
        return -1;  
    }  
      
    int divideWith = 0; // convert our input string to number - C++ style  
    stringstream s;  //利用stringstream来认真将参数转换为数字  
    s << argv[2];  
    s >> divideWith;  
    if (!s || !divideWith)  
    {  
        cout << "Invalid number entered for dividing. " << endl;  
        return -1;  
    }  
      
    uchar table[256];  
    for (int i = 0; i < 256; ++i)  
       table[i] = (uchar)(divideWith * (i/divideWith));  
      
    const int times = 100;  
    double t;  
      
    t = (double)getTickCount();  
      
    for (int i = 0; i < times; ++i)  
    {  
        cv::Mat clone_i = I.clone();  
        J = ScanImageAndReduceC(clone_i, table);  
    }  
      
    t = 1000*((double)getTickCount() - t)/getTickFrequency();  
    t /= times;  
      
    cout << "Time of reducing with the C operator [] (averaged for "
         << times << " runs): " << t << " milliseconds."<< endl;  
      
    t = (double)getTickCount();  
      
    for (int i = 0; i < times; ++i)  
    {  
        cv::Mat clone_i = I.clone();  
        J = ScanImageAndReduceIterator(clone_i, table);  
    }  
      
    t = 1000*((double)getTickCount() - t)/getTickFrequency();  
    t /= times;  
      
    cout << "Time of reducing with the iterator (averaged for "
        << times << " runs): " << t << " milliseconds."<< endl;  
      
    t = (double)getTickCount();  
      
    for (int i = 0; i < times; ++i)  
    {  
        cv::Mat clone_i = I.clone();  
        ScanImageAndReduceRandomAccess(clone_i, table);  
    }  
      
    t = 1000*((double)getTickCount() - t)/getTickFrequency();  
    t /= times;  
      
    cout << "Time of reducing with the on-the-fly address generation - at function (averaged for "
        << times << " runs): " << t << " milliseconds."<< endl;  
      
    Mat lookUpTable(1, 256, CV_8U);  
    uchar* p = lookUpTable.data;  
    for( int i = 0; i < 256; ++i)  
        p[i] = table[i];  
      
    t = (double)getTickCount();  
      
    for (int i = 0; i < times; ++i)  
        LUT(I, lookUpTable, J);  
      
    t = 1000*((double)getTickCount() - t)/getTickFrequency();  
    t /= times;  
      
    cout << "Time of reducing with the LUT function (averaged for "
        << times << " runs): " << t << " milliseconds."<< endl;  
    return 0;  
}  
      
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)  
{  
    // accept only char type matrices  
    CV_Assert(I.depth() != sizeof(uchar));  
      
    int channels = I.channels();  
      
    int nRows = I.rows;  
    int nCols = I.cols * channels;  
      
    if (I.isContinuous())  
    {  
        nCols *= nRows;  
        nRows = 1;  
    }  
      
    int i,j;  
    uchar* p;  
    for( i = 0; i < nRows; ++i)  
    {  
        p = I.ptr<uchar>(i);  
        for ( j = 0; j < nCols; ++j)  
        {  
            p[j] = table[p[j]];  
        }  
    }  
    return I;  
}  
      
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)  
{  
    // accept only char type matrices  
    CV_Assert(I.depth() != sizeof(uchar));  
      
    const int channels = I.channels();  
    switch(channels)  
    {  
    case 1:  
        {  
            MatIterator_<uchar> it, end;  
            for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)  
                *it = table[*it];  
            break;  
        }  
    case 3:  
        {  
            MatIterator_<Vec3b> it, end;  
            for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)  
            {  
                (*it)[0] = table[(*it)[0]];  
                (*it)[1] = table[(*it)[1]];  
                (*it)[2] = table[(*it)[2]];  
            }  
        }  
    }  
      
    return I;  
}  
      
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)  
{  
    // accept only char type matrices  
    CV_Assert(I.depth() != sizeof(uchar));  
      
    const int channels = I.channels();  
    switch(channels)  
    {  
    case 1:  
        {  
            for( int i = 0; i < I.rows; ++i)  
                for( int j = 0; j < I.cols; ++j )  
                    I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];  
            break;  
        }  
    case 3:  
        {  
         Mat_<Vec3b> _I = I;  
      
         for( int i = 0; i < I.rows; ++i)  
            for( int j = 0; j < I.cols; ++j )  
               {  
                   _I(i,j)[0] = table[_I(i,j)[0]];  
                   _I(i,j)[1] = table[_I(i,j)[1]];  
                   _I(i,j)[2] = table[_I(i,j)[2]];  
            }  
         I = _I;  
         break;  
        }  
    }  
      
    return I;  
}

作者:csdn博客 钟桓

    关键字:

在线提交作业