副标题#e#
这一章,我们对Hashtable举办进修。
我们先对Hashtable有个整体认识,然后再进修它的源码,最后再通过实例来学会利用Hashtable。
第1部门 Hashtable先容
Hashtable 简介
和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable 担任于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安详的。它的key、value都可觉得null。另外,Hashtable中的映射不是有序的。
Hashtable 的实例有两个参数影响其机能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表建设时的容量。留意,哈希表的状态为 open:在产生“哈希斗嘴”的环境下,单个桶会存储多个条目,这些条目必需按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以到达多满的一个标准。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否挪用 rehash 要领的详细细节则依赖于该实现。
凡是,默认加载因子是 0.75, 这是在时间和空间本钱上寻求一种折衷。加载因子过高固然淘汰了空间开销,但同时也增加了查找某个条目标时间(在大大都 Hashtable 操纵中,包罗 get 和 put 操纵,都反应了这一点)。
Hashtable的担任干系
java.lang.Object
java.util.Dictionary<K, V>
java.util.Hashtable<K, V>
public class Hashtable<K,V> extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable { }
Hashtable与Map干系如下图:
Hashtable的结构函数
// 默认结构函数。 public Hashtable() // 指定“容量巨细”的结构函数 public Hashtable(int initialCapacity) // 指定“容量巨细”和“加载因子”的结构函数 public Hashtable(int initialCapacity, float loadFactor) // 包括“子Map”的结构函数 public Hashtable(Map<? extends K, ? extends V> t)
Hashtable的API
synchronized void clear() synchronized Object clone() boolean contains(Object value) synchronized boolean containsKey(Object key) synchronized boolean containsValue(Object value) synchronized Enumeration<V> elements() synchronized Set<Entry<K, V>> entrySet() synchronized boolean equals(Object object) synchronized V get(Object key) synchronized int hashCode() synchronized boolean isEmpty() synchronized Set<K> keySet() synchronized Enumeration<K> keys() synchronized V put(K key, V value) synchronized void putAll(Map<? extends K, ? extends V> map) synchronized V remove(Object key) synchronized int size() synchronized String toString() synchronized Collection<V> values()
查察本栏目
第2部门 Hashtable源码理会
为了更相识Hashtable的道理,下面临Hashtable源码代码作出阐明。
在阅读源码时,发起参考后头的说明来成立对Hashtable的整体认识,这样更容易领略Hashtable。
package java.util; import java.io.*; public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, java.io.Serializable { // Hashtable生存key-value的数组。 // Hashtable是回收拉链法实现的,每一个Entry本质上是一个单向链表 private transient Entry[] table; // Hashtable中元素的实际数量 private transient int count; // 阈值,用于判定是否需要调解Hashtable的容量(threshold = 容量*加载因子) private int threshold; // 加载因子 private float loadFactor; // Hashtable被改变的次数 private transient int modCount = 0; // 序列版本号 private static final long serialVersionUID = 1421746759512286392L; // 指定“容量巨细”和“加载因子”的结构函数 public Hashtable(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry[initialCapacity]; threshold = (int)(initialCapacity * loadFactor); } // 指定“容量巨细”的结构函数 public Hashtable(int initialCapacity) { this(initialCapacity, 0.75f); } // 默认结构函数。 public Hashtable() { // 默认结构函数,指定的容量巨细是11;加载因子是0.75 this(11, 0.75f); } // 包括“子Map”的结构函数 public Hashtable(Map<? extends K, ? extends V> t) { this(Math.max(2*t.size(), 11), 0.75f); // 将“子Map”的全部元素都添加到Hashtable中 putAll(t); } public synchronized int size() { return count; } public synchronized boolean isEmpty() { return count == 0; } // 返回“所有key”的列举工具 public synchronized Enumeration<K> keys() { return this.<K>getEnumeration(KEYS); } // 返回“所有value”的列举工具 public synchronized Enumeration<V> elements() { return this.<V>getEnumeration(VALUES); } // 判定Hashtable是否包括“值(value)” public synchronized boolean contains(Object value) { // Hashtable中“键值对”的value不能是null, // 若是null的话,抛出异常! if (value == null) { throw new NullPointerException(); } // 从后向前遍历table数组中的元素(Entry) // 对付每个Entry(单向链表),逐个遍历,判定节点的值是否便是value Entry tab[] = table; for (int i = tab.length ; i-- > 0 ;) { for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) { if (e.value.equals(value)) { return true; } } } return false; } public boolean containsValue(Object value) { return contains(value); } // 判定Hashtable是否包括key public synchronized boolean containsKey(Object key) { Entry tab[] = table; int hash = key.hashCode(); // 计较索引值, // % tab.length 的目标是防备数据越界 int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return true; } } return false; } // 返回key对应的value,没有的话返回null public synchronized V get(Object key) { Entry tab[] = table; int hash = key.hashCode(); // 计较索引值, int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return e.value; } } return null; } // 调解Hashtable的长度,将长度酿本钱来的(2倍+1) // (01) 将“旧的Entry数组”赋值给一个姑且变量。 // (02) 建设一个“新的Entry数组”,并赋值给“旧的Entry数组” // (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中 protected void rehash() { int oldCapacity = table.length; Entry[] oldMap = table; int newCapacity = oldCapacity * 2 + 1; Entry[] newMap = new Entry[newCapacity]; modCount++; threshold = (int)(newCapacity * loadFactor); table = newMap; for (int i = oldCapacity ; i-- > 0 ;) { for (Entry<K,V> old = oldMap[i] ; old != null ; ) { Entry<K,V> e = old; old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = newMap[index]; newMap[index] = e; } } } // 将“key-value”添加到Hashtable中 public synchronized V put(K key, V value) { // Hashtable中不能插入value为null的元素!!! if (value == null) { throw new NullPointerException(); } // 若“Hashtable中已存在键为key的键值对”, // 则用“新的value”替换“旧的value” Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { V old = e.value; e.value = value; return old; } } // 若“Hashtable中不存在键为key的键值对”, // (01) 将“修改统计数”+1 modCount++; // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子) // 则调解Hashtable的巨细 if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; index = (hash & 0x7FFFFFFF) % tab.length; } // (03) 将“Hashtable中index”位置的Entry(链表)生存到e中 Entry<K,V> e = tab[index]; // (04) 建设“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并配置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。 tab[index] = new Entry<K,V>(hash, key, value, e); // (05) 将“Hashtable的实际容量”+1 count++; return null; } // 删除Hashtable中键为key的元素 public synchronized V remove(Object key) { Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)” // 然后在链表中找出要删除的节点,并删除该节点。 for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { modCount++; if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } count--; V oldValue = e.value; e.value = null; return oldValue; } } return null; } // 将“Map(t)”的中全部元素逐一添加到Hashtable中 public synchronized void putAll(Map<? extends K, ? extends V> t) { for (Map.Entry<? extends K, ? extends V> e : t.entrySet()) put(e.getKey(), e.getValue()); } // 清空Hashtable // 将Hashtable的table数组的值全部设为null public synchronized void clear() { Entry tab[] = table; modCount++; for (int index = tab.length; --index >= 0; ) tab[index] = null; count = 0; } // 克隆一个Hashtable,并以Object的形式返回。 public synchronized Object clone() { try { Hashtable<K,V> t = (Hashtable<K,V>) super.clone(); t.table = new Entry[table.length]; for (int i = table.length ; i-- > 0 ; ) { t.table[i] = (table[i] != null) ? (Entry<K,V>) table[i].clone() : null; } t.keySet = null; t.entrySet = null; t.values = null; t.modCount = 0; return t; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } public synchronized String toString() { int max = size() - 1; if (max == -1) return "{}"; StringBuilder sb = new StringBuilder(); Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{'); for (int i = 0; ; i++) { Map.Entry<K,V> e = it.next(); K key = e.getKey(); V value = e.getValue(); sb.append(key == this ? "(this Map)" : key.toString()); sb.append('='); sb.append(value == this ? "(this Map)" : value.toString()); if (i == max) return sb.append('}').toString(); sb.append(", "); } } // 获取Hashtable的列举类工具 // 若Hashtable的实际巨细为0,则返回“空列举类”工具; // 不然,返回正常的Enumerator的工具。(Enumerator实现了迭代器和列举两个接口) private <T> Enumeration<T> getEnumeration(int type) { if (count == 0) { return (Enumeration<T>)emptyEnumerator; } else { return new Enumerator<T>(type, false); } } // 获取Hashtable的迭代器 // 若Hashtable的实际巨细为0,则返回“空迭代器”工具; // 不然,返回正常的Enumerator的工具。(Enumerator实现了迭代器和列举两个接口) private <T> Iterator<T> getIterator(int type) { if (count == 0) { return (Iterator<T>) emptyIterator; } else { return new Enumerator<T>(type, true); } } // Hashtable的“key的荟萃”。它是一个Set,意味着没有反复元素 private transient volatile Set<K> keySet = null; // Hashtable的“key-value的荟萃”。它是一个Set,意味着没有反复元素 private transient volatile Set<Map.Entry<K,V>> entrySet = null; // Hashtable的“key-value的荟萃”。它是一个Collection,意味着可以有反复元素 private transient volatile Collection<V> values = null; // 返回一个被synchronizedSet封装后的KeySet工具 // synchronizedSet封装的目标是对KeySet的所有要领都添加synchronized,实现多线程同步 public Set<K> keySet() { if (keySet == null) keySet = Collections.synchronizedSet(new KeySet(), this); return keySet; } // Hashtable的Key的Set荟萃。 // KeySet担任于AbstractSet,所以,KeySet中的元素没有反复的。 private class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return getIterator(KEYS); } public int size() { return count; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return Hashtable.this.remove(o) != null; } public void clear() { Hashtable.this.clear(); } } // 返回一个被synchronizedSet封装后的EntrySet工具 // synchronizedSet封装的目标是对EntrySet的所有要领都添加synchronized,实现多线程同步 public Set<Map.Entry<K,V>> entrySet() { if (entrySet==null) entrySet = Collections.synchronizedSet(new EntrySet(), this); return entrySet; } // Hashtable的Entry的Set荟萃。 // EntrySet担任于AbstractSet,所以,EntrySet中的元素没有反复的。 private class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return getIterator(ENTRIES); } public boolean add(Map.Entry<K,V> o) { return super.add(o); } // 查找EntrySet中是否包括Object(0) // 首先,在table中找到o对应的Entry(Entry是一个单向链表) // 然后,查找Entry链表中是否存在Object public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry)o; Object key = entry.getKey(); Entry[] tab = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next) if (e.hash==hash && e.equals(entry)) return true; return false; } // 删除元素Object(0) // 首先,在table中找到o对应的Entry(Entry是一个单向链表) // 然后,删除链表中的元素Object public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; K key = entry.getKey(); Entry[] tab = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e.hash==hash && e.equals(entry)) { modCount++; if (prev != null) prev.next = e.next; else tab[index] = e.next; count--; e.value = null; return true; } } return false; } public int size() { return count; } public void clear() { Hashtable.this.clear(); } } // 返回一个被synchronizedCollection封装后的ValueCollection工具 // synchronizedCollection封装的目标是对ValueCollection的所有要领都添加synchronized,实现多线程同步 public Collection<V> values() { if (values==null) values = Collections.synchronizedCollection(new ValueCollection(), this); return values; } // Hashtable的value的Collection荟萃。 // ValueCollection担任于AbstractCollection,所以,ValueCollection中的元素可以反复的。 private class ValueCollection extends AbstractCollection<V> { public Iterator<V> iterator() { return getIterator(VALUES); } public int size() { return count; } public boolean contains(Object o) { return containsValue(o); } public void clear() { Hashtable.this.clear(); } } // 从头equals()函数 // 若两个Hashtable的所有key-value键值对都相等,则判定它们两个相等 public synchronized boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map<K,V> t = (Map<K,V>) o; if (t.size() != size()) return false; try { // 通过迭代器依次取出当前Hashtable的key-value键值对 // 并判定该键值对,存在于Hashtable(o)中。 // 若不存在,则当即返回false;不然,遍历完“当前Hashtable”并返回true。 Iterator<Map.Entry<K,V>> i = entrySet().iterator(); while (i.hasNext()) { Map.Entry<K,V> e = i.next(); K key = e.getKey(); V value = e.getValue(); if (value == null) { if (!(t.get(key)==null && t.containsKey(key))) return false; } else { if (!value.equals(t.get(key))) return false; } } } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } return true; } // 计较Hashtable的哈希值 // 若 Hashtable的实际巨细为0 可能 加载因子<0,则返回0。 // 不然,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。 public synchronized int hashCode() { int h = 0; if (count == 0 || loadFactor < 0) return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress Entry[] tab = table; for (int i = 0; i < tab.length; i++) for (Entry e = tab[i]; e != null; e = e.next) h += e.key.hashCode() ^ e.value.hashCode(); loadFactor = -loadFactor; // Mark hashCode computation complete return h; } // java.io.Serializable的写入函数 // 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中 private synchronized void writeObject(java.io.ObjectOutputStream s) throws IOException { // Write out the length, threshold, loadfactor s.defaultWriteObject(); // Write out length, count of elements and then the key/value objects s.writeInt(table.length); s.writeInt(count); for (int index = table.length-1; index >= 0; index--) { Entry entry = table[index]; while (entry != null) { s.writeObject(entry.key); s.writeObject(entry.value); entry = entry.next; } } } // java.io.Serializable的读取函数:按照写入方法读出 // 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出 private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the length, threshold, and loadfactor s.defaultReadObject(); // Read the original length of the array and number of elements int origlength = s.readInt(); int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but // no larger than the original size. Make the length // odd if it's large enough, this helps distribute the entries. // Guard against the length ending up zero, that's not valid. int length = (int)(elements * loadFactor) + (elements / 20) + 3; if (length > elements && (length & 1) == 0) length--; if (origlength > 0 && length > origlength) length = origlength; Entry[] table = new Entry[length]; count = 0; // Read the number of elements and then all the key/value objects for (; elements > 0; elements--) { K key = (K)s.readObject(); V value = (V)s.readObject(); // synch could be eliminated for performance reconstitutionPut(table, key, value); } this.table = table; } private void reconstitutionPut(Entry[] tab, K key, V value) throws StreamCorruptedException { if (value == null) { throw new java.io.StreamCorruptedException(); } // Makes sure the key is not already in the hashtable. // This should not happen in deserialized version. int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { throw new java.io.StreamCorruptedException(); } } // Creates the new entry. Entry<K,V> e = tab[index]; tab[index] = new Entry<K,V>(hash, key, value, e); count++; } // Hashtable的Entry节点,它本质上是一个单向链表。 // 也因此,我们才气揣度出Hashtable是由拉链法实现的散列表 private static class Entry<K,V> implements Map.Entry<K,V> { // 哈希值 int hash; K key; V value; // 指向的下一个Entry,即链表的下一个节点 Entry<K,V> next; // 结构函数 protected Entry(int hash, K key, V value, Entry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } protected Object clone() { return new Entry<K,V>(hash, key, value, (next==null ? null : (Entry<K,V>) next.clone())); } public K getKey() { return key; } public V getValue() { return value; } // 配置value。若value是null,则抛出异常。 public V setValue(V value) { if (value == null) throw new NullPointerException(); V oldValue = this.value; this.value = value; return oldValue; } // 包围equals()要领,判定两个Entry是否相等。 // 若两个Entry的key和value都相等,则认为它们相等。 public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) && (value==null ? e.getValue()==null : value.equals(e.getValue())); } public int hashCode() { return hash ^ (value==null ? 0 : value.hashCode()); } public String toString() { return key.toString()+"="+value.toString(); } } private static final int KEYS = 0; private static final int VALUES = 1; private static final int ENTRIES = 2; // Enumerator的浸染是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。 private class Enumerator<T> implements Enumeration<T>, Iterator<T> { // 指向Hashtable的table Entry[] table = Hashtable.this.table; // Hashtable的总的巨细 int index = table.length; Entry<K,V> entry = null; Entry<K,V> lastReturned = null; int type; // Enumerator是 “迭代器(Iterator)” 照旧 “列举类(Enumeration)”的符号 // iterator为true,暗示它是迭代器;不然,是列举类。 boolean iterator; // 在将Enumerator看成迭代器利用时会用到,用来实现fail-fast机制。 protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) { this.type = type; this.iterator = iterator; } // 从遍历table的数组的末端向前查找,直到找到不为null的Entry。 public boolean hasMoreElements() { Entry<K,V> e = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (e == null && i > 0) { e = t[--i]; } entry = e; index = i; return e != null; } // 获取下一个元素 // 留意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方法” // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。 // 然后,依次向后遍历单向链表Entry。 public T nextElement() { Entry<K,V> et = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (et == null && i > 0) { et = t[--i]; } entry = et; index = i; if (et != null) { Entry<K,V> e = lastReturned = entry; entry = e.next; return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); } throw new NoSuchElementException("Hashtable Enumerator"); } // 迭代器Iterator的判定是否存在下一个元素 // 实际上,它是挪用的hasMoreElements() public boolean hasNext() { return hasMoreElements(); } // 迭代器获取下一个元素 // 实际上,它是挪用的nextElement() public T next() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); return nextElement(); } // 迭代器的remove()接口。 // 首先,它在table数组中找出要删除元素地址的Entry, // 然后,删除单向链表Entry中的元素。 public void remove() { if (!iterator) throw new UnsupportedOperationException(); if (lastReturned == null) throw new IllegalStateException("Hashtable Enumerator"); if (modCount != expectedModCount) throw new ConcurrentModificationException(); synchronized(Hashtable.this) { Entry[] tab = Hashtable.this.table; int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e == lastReturned) { modCount++; expectedModCount++; if (prev == null) tab[index] = e.next; else prev.next = e.next; count--; lastReturned = null; return; } } throw new ConcurrentModificationException(); } } } private static Enumeration emptyEnumerator = new EmptyEnumerator(); private static Iterator emptyIterator = new EmptyIterator(); // 空列举类 // 当Hashtable的实际巨细为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空列举类”的工具。 private static class EmptyEnumerator implements Enumeration<Object> { EmptyEnumerator() { } // 空列举类的hasMoreElements() 始终返回false public boolean hasMoreElements() { return false; } // 空列举类的nextElement() 抛出异常 public Object nextElement() { throw new NoSuchElementException("Hashtable Enumerator"); } } // 空迭代器 // 当Hashtable的实际巨细为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的工具。 private static class EmptyIterator implements Iterator<Object> { EmptyIterator() { } public boolean hasNext() { return false; } public Object next() { throw new NoSuchElementException("Hashtable Iterator"); } public void remove() { throw new IllegalStateException("Hashtable Iterator"); } } }
说明:
#p#副标题#e#
在具体先容Hashtable的代码之前,我们需要相识:和Hashmap一样,Hashtable也是一个散列表,它也是通过“拉链法”办理哈希斗嘴的。
第2.1部门 Hashtable的“拉链法”相关内容
2.1.1 Hashtable数据存储数组
private transient Entry[] table;
Hashtable中的key-value都是存储在table数组中的。
#p#分页标题#e#
2.1.2 数据节点Entry的数据布局
private static class Entry<K,V> implements Map.Entry<K,V> { // 哈希值 int hash; K key; V value; // 指向的下一个Entry,即链表的下一个节点 Entry<K,V> next; // 结构函数 protected Entry(int hash, K key, V value, Entry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } protected Object clone() { return new Entry<K,V>(hash, key, value, (next==null ? null : (Entry<K,V>) next.clone())); } public K getKey() { return key; } public V getValue() { return value; } // 配置value。若value是null,则抛出异常。 public V setValue(V value) { if (value == null) throw new NullPointerException(); V oldValue = this.value; this.value = value; return oldValue; } // 包围equals()要领,判定两个Entry是否相等。 // 若两个Entry的key和value都相等,则认为它们相等。 public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) && (value==null ? e.getValue()==null : value.equals(e.getValue())); } public int hashCode() { return hash ^ (value==null ? 0 : value.hashCode()); } public String toString() { return key.toString()+"="+value.toString(); } }
#p#分页标题#e#
从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法办理哈希斗嘴的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是根基的读取/修改key、value值的函数。
第2.2部门 Hashtable的结构函数
#p#分页标题#e#
Hashtable共包罗4个结构函数
// 默认结构函数。 public Hashtable() { // 默认结构函数,指定的容量巨细是11;加载因子是0.75 this(11, 0.75f); } // 指定“容量巨细”的结构函数 public Hashtable(int initialCapacity) { this(initialCapacity, 0.75f); } // 指定“容量巨细”和“加载因子”的结构函数 public Hashtable(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry[initialCapacity]; threshold = (int)(initialCapacity * loadFactor); } // 包括“子Map”的结构函数 public Hashtable(Map<? extends K, ? extends V> t) { this(Math.max(2*t.size(), 11), 0.75f); // 将“子Map”的全部元素都添加到Hashtable中 putAll(t); }
第2.3部门 Hashtable的主要对外接口
2.3.1 clear()
#p#分页标题#e#
clear() 的浸染是清空Hashtable。它是将Hashtable的table数组的值全部设为null
public synchronized void clear() { Entry tab[] = table; modCount++; for (int index = tab.length; --index >= 0; ) tab[index] = null; count = 0; }
2.3.2 contains() 和 containsValue()
#p#分页标题#e#
contains() 和 containsValue() 的浸染都是判定Hashtable是否包括“值(value)”
public boolean containsValue(Object value) { return contains(value); } public synchronized boolean contains(Object value) { // Hashtable中“键值对”的value不能是null, // 若是null的话,抛出异常! if (value == null) { throw new NullPointerException(); } // 从后向前遍历table数组中的元素(Entry) // 对付每个Entry(单向链表),逐个遍历,判定节点的值是否便是value Entry tab[] = table; for (int i = tab.length ; i-- > 0 ;) { for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) { if (e.value.equals(value)) { return true; } } } return false; }
2.3.3 containsKey()
#p#分页标题#e#
containsKey() 的浸染是判定Hashtable是否包括key
public synchronized boolean containsKey(Object key) { Entry tab[] = table; int hash = key.hashCode(); // 计较索引值, // % tab.length 的目标是防备数据越界 int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return true; } } return false; }
2.3.4 elements()
#p#分页标题#e#
elements() 的浸染是返回“所有value”的列举工具
public synchronized Enumeration<V> elements() { return this.<V>getEnumeration(VALUES); } // 获取Hashtable的列举类工具 private <T> Enumeration<T> getEnumeration(int type) { if (count == 0) { return (Enumeration<T>)emptyEnumerator; } else { return new Enumerator<T>(type, false); } }
从中,我们可以看出:
(01) 若Hashtable的实际巨细为0,则返回“空列举类”工具emptyEnumerator;
(02) 不然,返回正常的Enumerator的工具。(Enumerator实现了迭代器和列举两个接口)
#p#分页标题#e#
我们先看看emptyEnumerator工具是如何实现的
private static Enumeration emptyEnumerator = new EmptyEnumerator(); // 空列举类 // 当Hashtable的实际巨细为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空列举类”的工具。 private static class EmptyEnumerator implements Enumeration<Object> { EmptyEnumerator() { } // 空列举类的hasMoreElements() 始终返回false public boolean hasMoreElements() { return false; } // 空列举类的nextElement() 抛出异常 public Object nextElement() { throw new NoSuchElementException("Hashtable Enumerator"); } }
我们在来看看Enumeration类
Enumerator的浸染是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator<T> implements Enumeration<T>, Iterator<T> { // 指向Hashtable的table Entry[] table = Hashtable.this.table; // Hashtable的总的巨细 int index = table.length; Entry<K,V> entry = null; Entry<K,V> lastReturned = null; int type; // Enumerator是 “迭代器(Iterator)” 照旧 “列举类(Enumeration)”的符号 // iterator为true,暗示它是迭代器;不然,是列举类。 boolean iterator; // 在将Enumerator看成迭代器利用时会用到,用来实现fail-fast机制。 protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) { this.type = type; this.iterator = iterator; } // 从遍历table的数组的末端向前查找,直到找到不为null的Entry。 public boolean hasMoreElements() { Entry<K,V> e = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (e == null && i > 0) { e = t[--i]; } entry = e; index = i; return e != null; } // 获取下一个元素 // 留意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方法” // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。 // 然后,依次向后遍历单向链表Entry。 public T nextElement() { Entry<K,V> et = entry; int i = index; Entry[] t = table; /* Use locals for faster loop iteration */ while (et == null && i > 0) { et = t[--i]; } entry = et; index = i; if (et != null) { Entry<K,V> e = lastReturned = entry; entry = e.next; return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); } throw new NoSuchElementException("Hashtable Enumerator"); } // 迭代器Iterator的判定是否存在下一个元素 // 实际上,它是挪用的hasMoreElements() public boolean hasNext() { return hasMoreElements(); } // 迭代器获取下一个元素 // 实际上,它是挪用的nextElement() public T next() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); return nextElement(); } // 迭代器的remove()接口。 // 首先,它在table数组中找出要删除元素地址的Entry, // 然后,删除单向链表Entry中的元素。 public void remove() { if (!iterator) throw new UnsupportedOperationException(); if (lastReturned == null) throw new IllegalStateException("Hashtable Enumerator"); if (modCount != expectedModCount) throw new ConcurrentModificationException(); synchronized(Hashtable.this) { Entry[] tab = Hashtable.this.table; int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e == lastReturned) { modCount++; expectedModCount++; if (prev == null) tab[index] = e.next; else prev.next = e.next; count--; lastReturned = null; return; } } throw new ConcurrentModificationException(); } } }
entrySet(), keySet(), keys(), values()的实现要领和elements()差不多,并且源码中已经明晰的给出了注释。这里就不再做过多说明白。
2.3.5 get()
#p#分页标题#e#
get() 的浸染就是获取key对应的value,没有的话返回null
public synchronized V get(Object key) { Entry tab[] = table; int hash = key.hashCode(); // 计较索引值, int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return e.value; } } return null; }
2.3.6 put()
put() 的浸染是对外提供接口,让Hashtable工具可以通过put()将“key-value”添加到Hashtable中。
public synchronized V put(K key, V value) { // Hashtable中不能插入value为null的元素!!! if (value == null) { throw new NullPointerException(); } // 若“Hashtable中已存在键为key的键值对”, // 则用“新的value”替换“旧的value” Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { V old = e.value; e.value = value; return old; } } // 若“Hashtable中不存在键为key的键值对”, // (01) 将“修改统计数”+1 modCount++; // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子) // 则调解Hashtable的巨细 if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; index = (hash & 0x7FFFFFFF) % tab.length; } // (03) 将“Hashtable中index”位置的Entry(链表)生存到e中 Entry<K,V> e = tab[index]; // (04) 建设“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并配置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。 tab[index] = new Entry<K,V>(hash, key, value, e); // (05) 将“Hashtable的实际容量”+1 count++; return null; }
2.3.7 putAll()
putAll() 的浸染是将“Map(t)”的中全部元素逐一添加到Hashtable中
1 public synchronized void putAll(Map<? extends K, ? extends V> t) {
2 for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
3 put(e.getKey(), e.getValue());
4 }
2.3.8 remove()
remove() 的浸染就是删除Hashtable中键为key的元素
public synchronized V remove(Object key) { Entry tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; // 找到“key对应的Entry(链表)” // 然后在链表中找出要删除的节点,并删除该节点。 for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { modCount++; if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } count--; V oldValue = e.value; e.value = null; return oldValue; } } return null; }
第2.4部门 Hashtable实现的Cloneable接口
Hashtable实现了Cloneable接口,即实现了clone()要领。
clone()要领的浸染很简朴,就是克隆一个Hashtable工具并返回。
// 克隆一个Hashtable,并以Object的形式返回。 public synchronized Object clone() { try { Hashtable<K,V> t = (Hashtable<K,V>) super.clone(); t.table = new Entry[table.length]; for (int i = table.length ; i-- > 0 ; ) { t.table[i] = (table[i] != null) ? (Entry<K,V>) table[i].clone() : null; } t.keySet = null; t.entrySet = null; t.values = null; t.modCount = 0; return t; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } }
第2.5部门 Hashtable实现的Serializable接口
Hashtable实现java.io.Serializable,别离实现了串行读取、写入成果。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:按照写入方法读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private synchronized void writeObject(java.io.ObjectOutputStream s) throws IOException { // Write out the length, threshold, loadfactor s.defaultWriteObject(); // Write out length, count of elements and then the key/value objects s.writeInt(table.length); s.writeInt(count); for (int index = table.length-1; index >= 0; index--) { Entry entry = table[index]; while (entry != null) { s.writeObject(entry.key); s.writeObject(entry.value); entry = entry.next; } } } private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the length, threshold, and loadfactor s.defaultReadObject(); // Read the original length of the array and number of elements int origlength = s.readInt(); int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but // no larger than the original size. Make the length // odd if it's large enough, this helps distribute the entries. // Guard against the length ending up zero, that's not valid. int length = (int)(elements * loadFactor) + (elements / 20) + 3; if (length > elements && (length & 1) == 0) length--; if (origlength > 0 && length > origlength) length = origlength; Entry[] table = new Entry[length]; count = 0; // Read the number of elements and then all the key/value objects for (; elements > 0; elements--) { K key = (K)s.readObject(); V value = (V)s.readObject(); // synch could be eliminated for performance reconstitutionPut(table, key, value); } this.table = table; }
第3部门 Hashtable遍历方法
3.1 遍历Hashtable的键值对
#p#分页标题#e#
第一步:按照entrySet()获取Hashtable的“键值对”的Set荟萃。
第二步:通过Iterator迭代器遍历“第一步”获得的荟萃。
// 假设table是Hashtable工具 // table中的key是String范例,value是Integer范例 Integer integ = null; Iterator iter = table.entrySet().iterator(); while(iter.hasNext()) { Map.Entry entry = (Map.Entry)iter.next(); // 获取key key = (String)entry.getKey(); // 获取value integ = (Integer)entry.getValue(); }
3.2 通过Iterator遍历Hashtable的键
第一步:按照keySet()获取Hashtable的“键”的Set荟萃。
第二步:通过Iterator迭代器遍历“第一步”获得的荟萃。
// 假设table是Hashtable工具 // table中的key是String范例,value是Integer范例 String key = null; Integer integ = null; Iterator iter = table.keySet().iterator(); while (iter.hasNext()) { // 获取key key = (String)iter.next(); // 按照key,获取value integ = (Integer)table.get(key); }
3.3 通过Iterator遍历Hashtable的值
第一步:按照value()获取Hashtable的“值”的荟萃。
第二步:通过Iterator迭代器遍历“第一步”获得的荟萃。
// 假设table是Hashtable工具 // table中的key是String范例,value是Integer范例 Integer value = null; Collection c = table.values(); Iterator iter= c.iterator(); while (iter.hasNext()) { value = (Integer)iter.next(); }
3.4 通过Enumeration遍历Hashtable的键
第一步:按照keys()获取Hashtable的荟萃。
第二步:通过Enumeration遍历“第一步”获得的荟萃。
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
3.5 通过Enumeration遍历Hashtable的值
第一步:按照elements()获取Hashtable的荟萃。
第二步:通过Enumeration遍历“第一步”获得的荟萃。
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
遍历测试措施如下:
import java.util.*; /* * @desc 遍历Hashtable的测试措施。 * (01) 通过entrySet()去遍历key、value,参考实现函数: * iteratorHashtableByEntryset() * (02) 通过keySet()去遍历key,参考实现函数: * iteratorHashtableByKeyset() * (03) 通过values()去遍历value,参考实现函数: * iteratorHashtableJustValues() * (04) 通过Enumeration去遍历key,参考实现函数: * enumHashtableKey() * (05) 通过Enumeration去遍历value,参考实现函数: * enumHashtableValue() * * @author skywang */ public class HashtableIteratorTest { public static void main(String[] args) { int val = 0; String key = null; Integer value = null; Random r = new Random(); Hashtable table = new Hashtable(); for (int i=0; i<12; i++) { // 随机获取一个[0,100)之间的数字 val = r.nextInt(100); key = String.valueOf(val); value = r.nextInt(5); // 添加到Hashtable中 table.put(key, value); System.out.println(" key:"+key+" value:"+value); } // 通过entrySet()遍历Hashtable的key-value iteratorHashtableByEntryset(table) ; // 通过keySet()遍历Hashtable的key-value iteratorHashtableByKeyset(table) ; // 单单遍历Hashtable的value iteratorHashtableJustValues(table); // 遍历Hashtable的Enumeration的key enumHashtableKey(table); // 遍历Hashtable的Enumeration的value //enumHashtableValue(table); } /* * 通过Enumeration遍历Hashtable的key * 效率高! */ private static void enumHashtableKey(Hashtable table) { if (table == null) return ; System.out.println("\nenumeration Hashtable"); Enumeration enu = table.keys(); while(enu.hasMoreElements()) { System.out.println(enu.nextElement()); } } /* * 通过Enumeration遍历Hashtable的value * 效率高! */ private static void enumHashtableValue(Hashtable table) { if (table == null) return ; System.out.println("\nenumeration Hashtable"); Enumeration enu = table.elements(); while(enu.hasMoreElements()) { System.out.println(enu.nextElement()); } } /* * 通过entry set遍历Hashtable * 效率高! */ private static void iteratorHashtableByEntryset(Hashtable table) { if (table == null) return ; System.out.println("\niterator Hashtable By entryset"); String key = null; Integer integ = null; Iterator iter = table.entrySet().iterator(); while(iter.hasNext()) { Map.Entry entry = (Map.Entry)iter.next(); key = (String)entry.getKey(); integ = (Integer)entry.getValue(); System.out.println(key+" -- "+integ.intValue()); } } /* * 通过keyset来遍历Hashtable * 效率低! */ private static void iteratorHashtableByKeyset(Hashtable table) { if (table == null) return ; System.out.println("\niterator Hashtable By keyset"); String key = null; Integer integ = null; Iterator iter = table.keySet().iterator(); while (iter.hasNext()) { key = (String)iter.next(); integ = (Integer)table.get(key); System.out.println(key+" -- "+integ.intValue()); } } /* * 遍历Hashtable的values */ private static void iteratorHashtableJustValues(Hashtable table) { if (table == null) return ; Collection c = table.values(); Iterator iter= c.iterator(); while (iter.hasNext()) { System.out.println(iter.next()); } } }
第4部门 Hashtable示例
#p#分页标题#e#
下面通过一个实例来进修如何利用Hashtable
import java.util.*; /* * @desc Hashtable的测试措施。 * * @author skywang */ public class HashtableTest { public static void main(String[] args) { testHashtableAPIs(); } private static void testHashtableAPIs() { // 初始化随机种子 Random r = new Random(); // 新建Hashtable Hashtable table = new Hashtable(); // 添加操纵 table.put("one", r.nextInt(10)); table.put("two", r.nextInt(10)); table.put("three", r.nextInt(10)); // 打印出table System.out.println("table:"+table ); // 通过Iterator遍历key-value Iterator iter = table.entrySet().iterator(); while(iter.hasNext()) { Map.Entry entry = (Map.Entry)iter.next(); System.out.println("next : "+ entry.getKey() +" - "+entry.getValue()); } // Hashtable的键值对个数 System.out.println("size:"+table.size()); // containsKey(Object key) :是否包括键key System.out.println("contains key two : "+table.containsKey("two")); System.out.println("contains key five : "+table.containsKey("five")); // containsValue(Object value) :是否包括值value System.out.println("contains value 0 : "+table.containsValue(new Integer(0))); // remove(Object key) : 删除键key对应的键值对 table.remove("three"); System.out.println("table:"+table ); // clear() : 清空Hashtable table.clear(); // isEmpty() : Hashtable是否为空 System.out.println((table.isEmpty()?"table is empty":"table is not empty") ); } }