Python科学计较库Numpy数组的初始化和根基操纵
当前位置:以往代写 > Python教程 >Python科学计较库Numpy数组的初始化和根基操纵
2019-06-14

Python科学计较库Numpy数组的初始化和根基操纵

Python科学计较库Numpy数组的初始化和根基操纵

NumPy系统是Python的一种开源的数值计较扩展。这种东西可用来存储和处理惩罚大型矩阵,比Python自身的嵌套列表(nested list structure)布局要高效的多(该布局也可以用来暗示矩阵(matrix))。它包罗:1、一个强大的N维数组工具Array;2、较量成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的东西包;4、实用的线性代数、傅里叶调动和随机数生成函数。numpy和稀疏矩阵运算包scipy共同利用越发利便。

本日我们来看下Numpy数组。

一. Numpy数组工具

Numpy中的多维数组称为ndarray,它有两个构成部门。

数据自己。

描写数据的元数据。

它有以下几个属性:

ndarray.ndim:数组的维数 

ndarray.shape:数组每一维的巨细 

ndarray.size:数组中全部元素的数量 

ndarray.dtype:数组中元素的范例(numpy.int32, numpy.int16, and numpy.float64等) 

ndarray.itemsize:每个元素占几个字节

在数组的处理惩罚进程中,原始数据不受影响,变革的只是元数据。

Numpy数组凡是是由沟通种类的元素构成,即数组中数据范例必需一致。长处是:数组元素范例沟通,可轻松确定存储数组所需的空间巨细。同时,numpy可运用向量化运算来处理惩罚整个数组。Numpy数组的索引从0开始。

例子:

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

二.建设数组:

利用array函数讲tuple和list转为array:

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

多维数组:

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])

生成数组的同时指定范例:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])

生成数组并赋为非凡值: 

ones:全1 

zeros:全0 

empty:随机数,取决于内存环境

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])

生成匀称漫衍的array: 

arange(最小值,最大值,步长)(左闭右开) 

#p#分页标题#e#

linspace(最小值,最大值,元素数量)

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points

三.根基运算:

整个array按顺序参加运算:

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)

两个二维利用*标记仍然是按位置一对一相乘,假如想暗示矩阵乘法,利用dot:

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A*B                         # elementwise product
array([[2, 0],
       [0, 4]])
>>> A.dot(B)                    # matrix product
array([[5, 4],
       [3, 4]])
>>> np.dot(A, B)                # another matrix product
array([[5, 4],
       [3, 4]])

内置函数(min,max,sum),同时可以利用axis指定对哪一维举办操纵:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])

Numpy同时提供许多全局函数

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

四.寻址,索引和遍历:

#p#分页标题#e#

一维数组的遍历语法和Python list雷同:

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0

多维数组的会见通过给每一维指定一个索引,顺序是先高维再低维:

>>> def f(x,y):
...     return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])
When fewer indices are provided than the number of axes, the missing indices are considered complete slices:
>>>
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

…标记暗示将所有未指定索引的维度均赋为 : ,:在python中暗示该维所有元素:

>>> c = np.array( [[[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
...                 [ 10, 12, 13]],
...                [[100,101,102],
...                 [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...]                                   # same as c[1,:,:] or c[1]
array([[100, 101, 102],
       [110, 112, 113]])
>>> c[...,2]                                   # same as c[:,:,2]
array([[  2,  13],
       [102, 113]])

遍历: 

#p#分页标题#e#

假如只想遍历整个array可以直接利用:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

可是假如要对每个元素举办操纵,就要利用flat属性,这是一个遍历整个数组的迭代器

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

    关键字:

在线提交作业